RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, SEPTEMBER 2020

SECOND YEAR (BATCH 2018-21)

CHEMISTRY (Honours)

Date : 26/09/2020 : 11.00 am – 3.00 pm Time

Paper : IV

Full Marks : 50

[3×6]

[Attempt all the Groups in the same Answer book]

Group –A (Physical)

[Attempt any three questions]

- The EMF of the cell Bi $|Bi_2S_3(s)|Bi_2S_3(aq)|Bi$ is 0.96 V at 25^oC. Calculate (a) the solubility 1. a) product of Bi_2S_3 and (b) its solubility at $25^{\circ}C$. (Mol Wt of $Bi_2S_3 = 514$ g/mol) [3]
 - The mean ionic activity coefficient of CdCl₂ in a 0.100 mol/kg aqueous CdCl₂ solution at 25°C b) and 1 bar as $\gamma_{+}= 0.228$. Find E° and E at 25°C and 1 bar for the cell [3]

Cd(s) | $CdCl_2$ (aq, 0.100 mol/kg) | AgCl(s) | Ag(s)

$$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s) E^{0} = -0.402 V$$
$$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq) E^{0} = 0.222 V$$

Consider the couple $0 + e^- = R$ with all of the oxidized and reduced species at unit activity. What 2. a) must be the value of E^0 of the couple if the oxidant is to liberate oxygen at 1 atm by the half-cell reaction,

 $O_2(g) + 2H_2O + 4e^- = 4OH^ E^0 = 0.401V$

i) from a basic solution, $a_{OH-} = 1$?

ii) from an acid solution, $a_{H_{+}} = 1$?

iii) Is oxygen a better oxidizing agent in acid or in basic solution?

- The specific conductance of a saturated solution of $BaSO_4$ is 3.48 x 10⁻⁶ S/cm and that of pure b) water is 5 x 10^{-7} S/cm. The ionic conductance values of Ba²⁺ and SO₄²⁻ ions are 127.26 and 160.04 S cm²/mol. Calculate the solubility product of BaSO₄. [3]
- 3. a) Specific conductance, equivalent conductance, equivalent conductance at infinite dilution: mention how each of these quantities depend on concentration? [3]
 - The equivalent conductance of LiCl at infinite dilution is 115.03×10^{-4} S m²/mol. The cationic b) transport number is 0.336. Calculate the mobility of the cation and its velocity if the applied potential difference across two electrodes, 0.4 cm apart, is 6.0 volt. [3]
- 4. a) An H-like orbital is given below –

$$\psi = A \left(\frac{z}{a}\right)^{5/2} \left(6 - \frac{zr}{a}\right) r e^{-zr/3a} \cos\theta$$

where A is the normalization constant, others are carrying the usual meaning. Determine n, l, m_1 [2] for the function, by simple inspection. Which orbital does it represent?

[3×1]

- b) Present the radial equation of H atom (z = 1) as an eigenvalue equation in a.u. and verify that $R_{20}(\mathbf{r}) = \frac{1}{2\sqrt{2}}(2-r)e^{-r/2}$ is a normalized eigenfunction. [1+2]
- c) Calculate the orbital angular momentum value of 3d electron and show its orientation. [1]
- 5. a) Verify that <1/r> for 1s electron of H-like atom is 1/a₀. Given that $\psi_{1s} = \frac{e^{-r/a_0}}{\sqrt{3}a_0^{3/2}}$. [2]
 - b) Give a qualitative plot of radial functions for 2s and 2p orbitals of H-like atom, in same graph. Also comment on the appearance of node in these orbitals. [2]
 - c) Show that, the degeneracy for nth energy level of H atom is n^2 .

Group – B (Organic) [Attempt <u>any four</u> questions] [4×4]

[2]

[2]

6. a) Give retrosynthetic analysis and an efficient synthesis of the molecule below: [2]

7. a) Predict the product for the following reaction:

- b) "Diazomethane in an excellent reagent for ring expansion reaction" -- Justify the statement giving example. [1]
- c) "Phthalimide is an excellent choice as staring material for the synthesis of primary amine"-justify.
- 8. Predict the product(s) formation and also explain the mechanism: $[2\times 2]$

9. a) Predict the product formation and also explain the mechanism:

PhCOMe $\xrightarrow{NH_2OH}$? $\xrightarrow{H^+}$

b) Justify or criticize: "Hoffmann bromamide degradation is an intramolecular rearrangement". [2]

[2]

[4×4]

10. a) Predict the product formation and also explain the mechanism: $[2\times 2]$

i) RCOOH + HN₃
$$\xrightarrow{H_2SO_4}$$

ii) \xrightarrow{O} i) NaOH/H₂O
ii) H⁺

Group – C (Inorganic)

[Attempt any four questions]

11.	a)	Write down the structure of "Borax" mentioning hybrid orbitals used by the boron centres.	[2]
	b)	Aqueous borax solution has buffering property – why?	[1]
	c)	Complete the following reaction: Borax + CaF_2 + H_2SO_4 (anhydrous) \rightarrow	[1]
12.	a)	Using MOT, give B-H-B bonding in B_2H_6 .	[2]
	b)	Give the similarity and dissimilarity of anhydrous BCl_3 and anhydrous $AlCl_3$ at their gas phase in the light of (i) Lewis acidity, (ii) structure.	[2]
13.	a)	Layered (BN) _x though has graphite like structure but insulator-why?	[2]
	b)	Trisilyl amine and trimethyl amine reacts differently with HCl-why? Write the reaction products in each case.	[2]
14.		What are silicones? Mention the different precursor units for silicon synthesis. How are they prepared? [1+	-1+2]
15.		What are pseudo halogens? Why they are so called? What are the basic differences between halogens and pseudo halogens? [1+	-2+1]

_____ X _____

(3)